附录 2

通信功能

2.1	关于通信功能的补充说明	.238
2.2	变频器中 MEWTOCOL-COM 的使用方法	.238
2.3	变频器中 Modbus(RTU)的通信概要	.255
2.4	MEWTOCOL-COM/Modbus(RTU)	
	的共通注意事项	.268
2.5	关于变频器中可使用的通信功能	.269
2.6	关于通信时的出错代码	.283

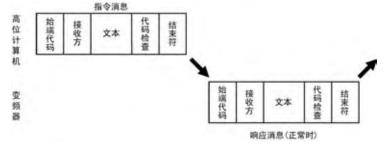
2.1 关于通信功能的补充说明

VF100 的通信协议依据"MEWTOCOL-COM"与"Modbus(RTU)"。任何情况下均可进行 1: N 通信。

• "MEWTOCOL-COM"

本公司的可编程控制器(PLC)所使用的通信协议。

· "Modbus(RTU)"


这是现场网络 Modbus 用的通信协议。

2.2 变频器中 MEWTOCOL-COM 的使用方法

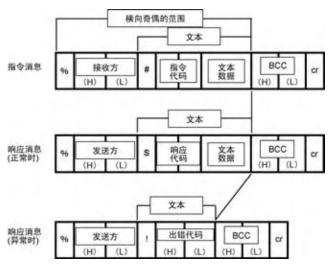
2.2.1 概要

高位计算机向变频器发送指令(命令),并接收变频器发来的响应(次答)。 按照该步骤,高位计算机可与变频器进行会话,可获得或者传送各种信息。

- · ASCII 代码发送。
- 最初的发送权在高位计算机侧。
- 每次发送指令消息时,发送权均会转移。

2.2.2 MEWTOCOL-COM 的注意事项

VF100 系列依据 MEWTOCOL-COM, 但是以下内容不同, 因此敬请注意。


- (1) 变频器中不对应多个帧,只对应单一帧。
- (2) 仅对应以下 11 种指令。 RCS, RCP, WCS, WCP, RCC, WCC, RD, WD, MC, MD, MG
- (3) 使用 WD 及 RD 指令时的数据代码为 "D" (数据寄存器)。
- (4) 使用 WCS, WCP 及 RCS, RCP 指令时的接点代码为 "R"(内部继电器)。
- (5) 始端代码仅对应"%"。
- (6) 变频器的内部存储器中没有数据区域、设定区域的区别。对于同一地址(区域),可处理字节数据(16bit)、接点数据(1bit)。

■ 对应指令一览表

指令代码	内容	最大读取□写入点数
RCS	以1点为单位读取接点信息	1 点
RCP	接点信息的多点读取	8 点
RCC	以字为单位读取接点信息	27 点
WCS	以1点为单位写入接点信息	1 点
WCP	接点信息的多点写入	8 点
WCC	以字为单位写入接点信息	12 个数据
RD	数据域的读取	27 个数据
WD	数据域的写入	12 个数据
MC	监视接点的登录及取消登录	40 点
MD	监视数据的登录及取消登录	16 点
MG	执行监视	接点: 40 点/数据: 16 个数据

关于消息的格式

■ 基本格式(单一帧)

消息的构成

以下将说明构成消息的各个因素。

■ 控制代码

名称	字符	ASCII 代码 (HEX)	说明
始端代码	%	25	显示消息的开始。
指令	#	23	显示指令消息。
响应(正常)	\$	24	显示正常的响应消息。
响应(异常)	!	21	显示异常的响应消息。
结束符	cr	0D	显示消息的结束。

■ 接收方・发送方

用 2 位的 10 进制数来表示。(H) 表示十位、(L) 表示个位。01 \sim 31(ASCII 代码)有效。

指令消息内显示应接收指令消息的通信站号(接收方)。

响应消息内显示发送响应消息的通信站号(发送方)。即接收方和发送方为同一通 信站号。

全站传送(一起传送给所有通信站号)时,指令消息的接收方为"FF",不返回对于该指令消息的响应消息。

■ 异或校验(BCC)

用 2 位的 16 进制数($00\sim FF$ 、ASCII 代码)来表示。使用横向奇偶,用于检测传送数据错误的代码。

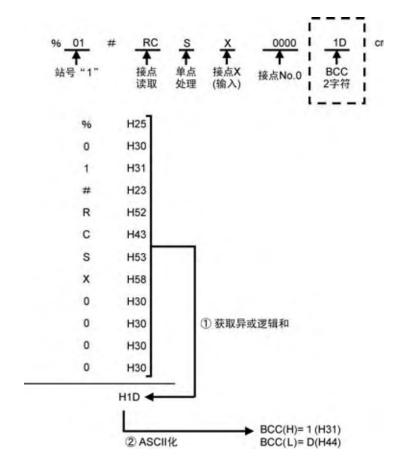
但是,不输入 BCC,而输入**的情况下,可在没有 BCC 的情况下进行传送。此时,响应中仍带有 BCC。

请参照"BCC代码的编制方法"。

■ 出错代码

用 2 位的 10 进制数来表示。发生出错时显示该内容。请参照 P.283 的"出错代码一览表"。

■ BCC(异或校验)的编制方法


为了提高传送数据的可靠性,使用横向奇偶,进行错误检查。

BCC 是用于横向奇偶校验的代码。

BCC 获取从始端代码(%)到文本最终字符的异或逻辑和,将该 8 位数据转换为 ASCII 代码的 2 字符后进行编制。

对于所接收到的消息始端代码(%)至文本最终字符的异或逻辑和,核对与发送前的值是否相同。发送前和发送后的 BCC 不同的情况下,说明通信过程中发生了某种异常。

《例》

2.2.3 可使用的 MEWTOCOL-COM 指令

变频器所对应的指令有以下 11 种。

指令代码	内容
RCS	以1点为单位读取接点信息
RCP	接点信息的多点读取
RCC	以字为单位读取接点信息
WCS	以 1 点为单位写入接点信息
WCP	接点信息的多点写入
WCC	以字为单位写入接点信息
RD	数据区域的读取
WD	数据区域的写入
MC	监控接点的登录及登录解除
MD	监控数据的登录及登录解除
MG	执行监控

- 使用 WD 及 RD 指令时的数据代码为 "D" (数据寄存器)。
- 使用 WCS, WCP, WCC 及 RCS, RCP, RCC 指令时的接点代码为"R"(内部 继电器)。
- MC 指令的登录接点数最大为 40 点。
- · MD 指令的登录数据数最大为 16 数据。

RCS:接点区域读取(单点)

■ 指令

96	接收方	接收方	#	R	С	S	接点代码	接点的	10.	BCC	BCC	a
	(H)	(L)		-2			(1字符)	(4字符	4)	(H)	(L)	
							ı	10进制	16进制			
								地址 (3位)	BIT指定			

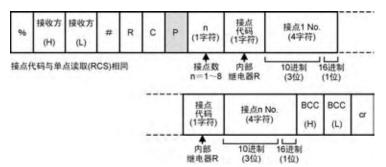
响应

• 正常时响应(读取 OK)

	发送方	发送方				接点	BCC	BCC	
96	(H)	(L)	S	R	С	数据 (1字符)	(H)	(L)	a

• 出错响应(读取出错)

■ 接点代码


接点	数据	
R	[R]	内部继电器

■ 接点数据

接点状态	数据
OFF	0
ON	1

RCP:接点区域读取(多个点)

■ 指令

■ 响应

• 正常时响应(读取 OK)

RCC:接点区域读取(字单位块)

■ 指令

96	接收方 (H)	接收方	#	R	С	С	接点 代码 (1字符)	起始字 No. (4字符)	最终字 No. (4字符)	BCC (H)	BCC (L)	cr
接点	代码与单	点读取(F	RCS)#	相同			↑ 内部 继电器R	10进制 (4位)	10进制 (4位)	j		

响应

• 正常时响应(读取 OK)

WCS:接点区域写入(单点)

■ 指令

96	接收方 (H)	接收方	#	w	С	s	接点 代码 (1字符)	接点No. (4字符)	数据 (1字符)	BCC (L)	cr
							L		进制		

10进制 16进制 地址 BIT指定 (3位) (1位)

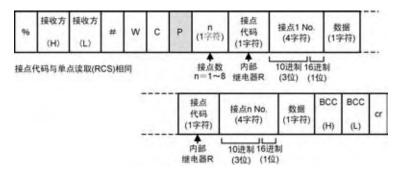
响应

• 正常时响应(写入 OK)

1	发送方	发送方			BCC	BCC	
96			\$ W	С			cr
	(H)	(L)			(H)	(L)	

• 出错响应(读取出错)

■ 接点代码

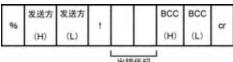

接点	数据	
R	"R"	内部继电器

■ 数据

接点状态	数据
OFF	.0
ON	1

WCP:接点区域写入(多个点)

■ 指令

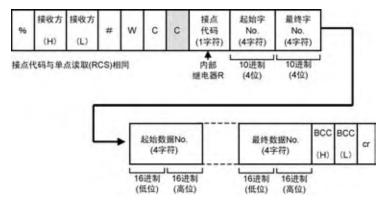


■ 响应

• 正常时响应(写入 OK)

	发送方	发送方				BCC	BCC	
96	1		s	W	C			cr
	(H)	(L)				(H)	(L)	

• 出错响应(读取出错)


出错代码

■ 数据

接点状态	数据
OFF	0
ON	1

WCC:接点区域写入(字单位块)

■ 指令

■ 响应

·正常时响应(写入 OK)

RD:数据区域读取

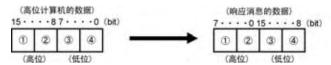
■ 指令

96	接牧方 (H)	接收方	#	R	D	数据 代码 (1字符)	开始数据 No. (5字符)	结束数据 No. (5字符)	BCC (H)	BCC (L)	a
					(◆ D 数据寄存器)	10进制 (5位)	10进制 (5位)			

■ 响应

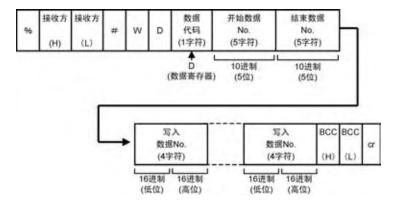
· 正常时响应(读取 OK)

• 出错响应(读取出错)



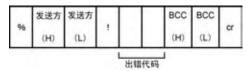
■ 数据代码

数据 寄存器	数据
DT	[D]


• 数据的读取方法

高位字节和低位字节交换,存储在消息中,因此敬请注意。

WD:数据区域写入


■ 指令

■ 响应

·正常时响应(写入 OK)

MC: 监控接点登录·登录复位

■ 指令

• 登录

• 登录复位

	接收方										BCC	BCC	
96			#	М	C	F	F	F	F	F			cr
	(H)	(L)									(H)	(L)	

■ 响应

• 登录 OK

	发送方	发送方			BCC	BCC	1
96			\$ M	C			cr
	(H)	(L)			(H)	(L)	

• 登录出错

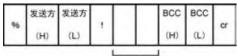
• 登录个数最多为 40 点。

MD: 监控数据登录·登录复位

■ 指令

• 登录

• 登录复位


	接收方	接收方				_	_	_	_			BCC	BCC	
90	(H)	(L)	#	М	D	٢	٢	٢	L	F	٢	(H)	(L)	cr

响应

• 登录 OK

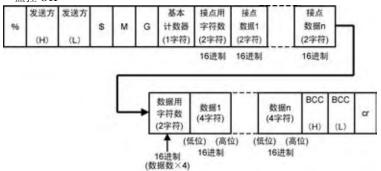
	发送方	发送方				BCC	BCC	
96	(H)	71.5	S	М	D	(H)	as	cr

• 登录出错

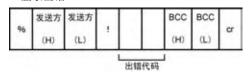
出错代码

• 登录个数最多为 16 个。

MG: 监控执行


读取 MC 指令、MD 指令所登录的接点及数据区域的状态。

■ 指令


	接收方	接收方			BCC	BCC	1
96			M	G			cr
	(H)	(L)			(H)	(L)	

■ 响应

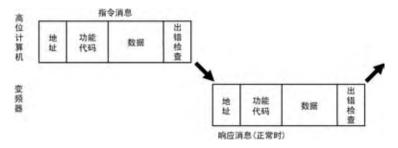
· 监控 OK

• 登录出错

•接点数据为2字符,返回8接点的数据。

- •数据方面,每4字符返回1个数据。
- · 字符数为将奇偶数据转换为 ASCII 的内容。
- •基本计数器中上次响应至下次响应的 PLC 扫描数达到 10 以上时返回"A"。

2.3 变频器中 Modbus(RTU)的通信概要

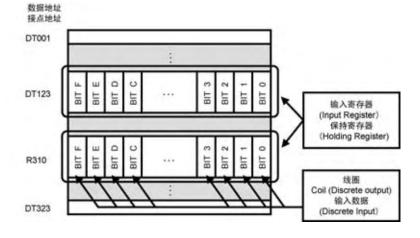

2.3.1 概要

Modbus 通信中以高位计算机为主站、以变频器为从站,由主站向从站发送指令, 从站根据该指令执行指定的功能,并返回响应消息。

主站发出的指令的传送格式由从站地址、功能代码、数据、出错检查字段构成。 此外,响应消息的传送格式由要求内容的确认字段、响应数据及出错检查字段构成。

变频器中的 Modbus 通信仅为 RTU 模式。

- 最初的发送权在高位计算机侧。
- 每次发送指令消息时,发送权均会转移。

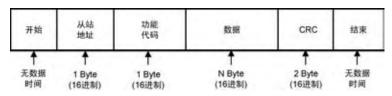


2.3.2 Modbus(RTU)通信使用时的注意事项

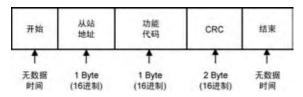
VF100 依据 Modbus(RTU)通信,但是以下几点内容不同,因此敬请注意。

1. VF100 中只有 1 个数据块。

- 2. 各数据可按照 1bit 或者 16bit 进行访问。 《地址计算示例》指定 123 的第 9bit 时接点地址 = 123×16+9 = 1977(dec) = 0×07B9
- 3. 可使用的功能代码有以下8个。
 - "线圈读取(Read Coils)".
 - "输入数据读取(Read Discrete Inputs)",
 - "保持寄存器读取(Read Holding Registers)",
 - "输入寄存器读取(Read Input Registers)",
 - "线圈写入(单点)(Write Single Coil)",
 - "寄存器写入(单点)(Write Single Register)",
 - "线圈写入(多个点)(Write Multiple Coils)",
 - "寄存器写入(多个点)(Write Multiple Registers)"
- 4. 没有线圈(Coil (Discrete output))和输入数据(Discrete input)的区别地址相同的情况下,显示相同的接点编号。
- 5. 没有输入寄存器(Input register)和保持寄存器(Holding register)的区别。地 址相同的情况下,显示相同的接点编号。



6. Modbus(RTU)通信中通常帧的开始和结束设定为 3.5 字符的时间,变频器中通过 "P142: TEXT 完成判断时间"来进行设定。请根据通信速度来更改参数 P142 的设定值。


关于消息帧

■ 基本帧

指令消息/正常响应消息

异常响应消息

消息的构成

以下将说明构成消息的各个因素。

■ 开始/结束

Modbus(RTU)通信中通常帧的开始和结束设定为 3.5 字符的时间,变频器中通过 "P142: TEXT 完成判断时间"来进行设定。

请根据通信速度来更改参数 P142 的设定值。

■ 从站地址

设定范围为 $1\sim31$ 。("P136:通信站号设定")"0"为广播(全站指令)。广播的情况下,对于该指令消息,不返回响应消息。

■ 功能代码

可使用的功能代码有以下8个。

- "线圈读取(Read Coils)",
- "输入数据读取(Read Discrete Inputs)",
- "保持寄存器读取(Read Holding Registers)",
- "输入寄存器读取(Read Input Registers)",
- "线圈写入(单点)(Write Single Coil)",
- "寄存器写入(单点)(Write Single Register)",
- "线圈写入(多个点)(Write Multiple Coils)",
- "寄存器写入(多个点)(Write Multiple Registers)"

■ CRC 代码

CRC 代码用来检查数据传送时,消息帧中是否有错误。发送侧经过计算,在消息帧上附加 CRC 代码,接收侧对于接收数据也同样计算 CRC 代码。之后核对这两个 CRC 代码。

CRC-16(CRC-ANSI)。通过 0xA001 的右侧进行判断、计算。 $(x^{16}+x^{15}+x^2+1)$

- •接收数据的 CRC 代码不正确的情况下,不进行任何处理,也不发送返回数据。
- •接收数据的 CRC 代码为 0x00 的情况下,不执行 CRC 检查。 返回数据中带有计算出的 CRC 代码。

2.3.3 可使用的 Modbus(RTU)的功能代码

变频器所对应的功能代码有以下8种。

功能	代码	名前	最大读取/写入数
DEC	HEX	石 則	取人供拟与八致
01	0x01	线圈读取(Read Coils)	32 coils
02	0x02	输入数据读取(Read Discrete Inputs)	32 coils
03	0x03	保持寄存器读取(Read Holding Registers)	32 registers
04	0x04	输入寄存器读取(Read Input Registers)	32 registers
05	0x05	线圈写入(单点) (Write Single Coil)	1 coil
06	0x06	寄存器写入(单点) (Write Single Register)	1 register
15	0x0F	线圈写入(多个点) (Write Multiple Coils)	32 coils
16	0x10	寄存器写入(多个点) (Write Multiple Registers)	32 registers

• 变频器中没有线圈(Coil(Discrete output)))和输入数据(Discrete input)的区别、也没有输入寄存器(Input register)和保持寄存器(Holding register)的区别。

线圈读取(Read Coil): "0x01"

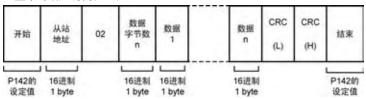
■ 指令

开始	从站 地址	01	开始 地址 (H)	开始 地址 (L)	读取 线圈数 (H)	渎取 线圈数 (L)	CRC (L)	CRC (H)	结束
P142的 设定值	16进制 1 byte		16进制 1 byte	16进制 1 byte	16进制 1 byte	16进制 1 byte		进制 byte	P142的 设定值

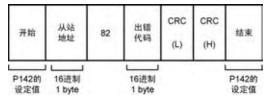
响应

• 正常时响应(读取 OK)

- •数据1的最低位是开始读取地址的线圈数据。
- •最后的数据线圈不满8位时,插入0。


输入数据读取(Read Discrete Input): "0x02"

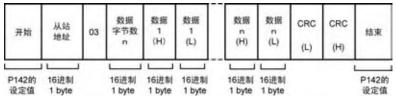
■ 指令


开始	从站 地址	02	开始 地址 (H)	开始 地址 (L)	读取 数据数 (H)	读取 数据数 (L)	CRC (L)	CRC (H)	结束
P142的 设定值	16进制 1 byte		16进制 1 byte	16进制 1 byte	16进制 1 byte	16进制 1 byte		走制 syte	P142的 设定值

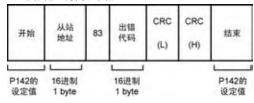
■ 响应

• 正常时响应(读取 OK)

- 出错响应(读取出错)
- •数据1的最低位是开始读取地址的线圈数据。
- •最后的数据线圈不满8位时,插入0。


保持寄存器读取(Read Holding Registers): "0x03"

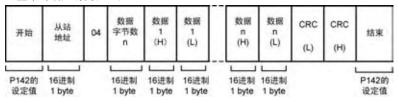
■ 指令


开始	从站 地址	03	开始 地址 (H)	开始 地址 (L)	读取 寄存器数 (H)	读取 寄存器数 (L)	CRC (L)	CRC (H)	结束
P142的 设定值	16进制 1 byte		16进制 1 byte	16进制 1 byte	16进制 1 byte	16进制 1 byte	16ii 2 b		P142的 设定值

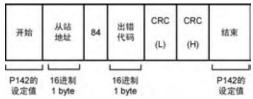
响应

• 正常时响应(读取 OK)

• 由于寄存器为2字节,因此数据字节数为读取寄存器数的2倍


输入寄存器读取(Read Input Registers): "0x04"

■ 指令


开始	从站 地址	04	开始 地址 (H)	开始 地址 (L)	读取 寄存器数 (H)	读取 寄存器数 (L)	CRC (L)	CRC (H)	结束
P142的 设定值	16进制 1 byte		L 16进制 1 byte	16进制 1 byte	16进制 1 byte	16进制 1 byte	16进 2 by		P142的 设定值

■ 响应

• 正常时响应(读取 OK)

- 由于寄存器为 2 字节,因此数据字节数为读取寄存器数的 2 倍。
- 出错响应(读取出错)

线圈写入(单点) (Write Single Coil): "0x05"

■ 指令

开始	从站 地址	05	开始 地址 (H)	开始 地址 (L)	数据 (H)	数据 (L) 0x00	CRC (L)	CRC (H)	结束
P142的 设定值	16进制 1 byte		16进制 1 byte	16进制 1 byte	16进制 1 byte	16进制 1 byte		±8l yte	P142的 设定值

- 要将数据(H)置 ON 时为 0xFF、置 OFF 时为 0x00
- 数据(L)固定为 00H。

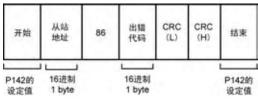
| 响应

• 正常时响应(写入 OK)

- 与指令相同。
- 出错响应(读取出错)

寄存器写入(单点) (Write Single Register): "0x06"

■ 指令


开始	从站 地址	06	开始 地址 (H)	开始 地址 (L)	数据 (H)	数据 (L)	CRC (L)	CRC (H)	结束
P142的 设定值	16进制 1 byte		16进制 1 byte	16进制 1 byte	16进制 1 byte	16进制 1 byte		进制 ryte	P142的 设定值

■ 响应

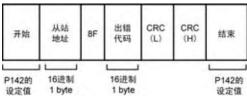
·正常时响应(写入 OK)

• 与指令相同。

线圈写入(多个点)(Write Multiple Coils): "0x0F"

■ 指令

•数据字节数为2或者4,是数据数的2倍。



P142的 设定值

■ 响应

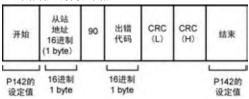
• 正常时响应(写入 OK)

寄存器写入(多个点)(Write Multiple Registers): "0x10"

■ 指令

• 由于线圈数为 1~32,数据字节

数为2~64,是线圈数的2倍



16进制 16进制 P142的 1 byte 1 byte 设定值

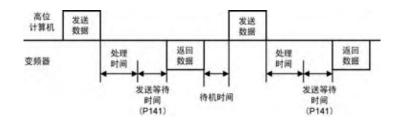
响应

• 正常时响应(写入 OK)

2.4 MEWTOCOL-COM/Modbus(RTU)的共通注 意事项

通过变频器进行通信时,MEWTOCOL-COM/Modbus(RTU)这两个协议中的共通注意事项有以下 2 点。

2.4.1 发送 / 接收切换待机时间


变频器发送完返回数据后,在高位计算机发送下一发送数据之前,请将待机时间 设定为下表所示的值以上。

通信速度(bps)	待机时间(msec)
4800	2.0
9600	1.0
19200	0.5
38400	0.2

2.4.2 变频器中的处理时间

变频器中的内部处理时间因变频器的运行状态而异,但均在50msec以下。

"P151: 设常数据清除"的情况下,由于向内部存储器进行写入处理,因此最多花费 2.0sec 的处理时间。在高位计算机中设定通信超时的情况下,请设定为不会对系统产生影响的时间。

2.5 关于变频器中可使用的通信功能

利用通信可执行"监控"、"控制/指令"、"设定"功能。

功能	寄存器编号 继电器编号	功能名称	备注
	DT301	输出频率	0.01Hz 单位(数据类型 3)
	DT302	输出电流	0.1A 单位(数据类型 2)
	DT303	输出电压	0.1VAC 单位(数据类型 2)
	DT304	内部直流电压	0.1VDC 单位(数据类型 2)
	DT305	设定频率	0.01Hz 单位(数据类型 3)
	DT306	通信站号	显示当前所设定的通信站号
	DT307	定时器运行次数	显示定时器运行时1周期的持续次数
	DT308	警报种类	显示警报 LED 的显示内容
	R309□	控制电路端子状态(输入信号)	接点数据
	R310□	控制电路端子状态(输出信号)	接点数据
业	R311□	运行状态监控	接点数据
控	R312□	运行控制状态监控	接点数据
,_	R313□	端子功能状态监控	接点数据
	DT314	PID 设定值(SP)	0.01%单位(数据类型 3)
	DT315	PID 目标值(PV)	0.01%单位(数据类型 3)
	DT316	PID 输出值(MV)	0.01%单位(数据类型 3)
	DT317	自动调谐进行状况	0-5: 测定中 6: 测定完成 7: 测定中止
	DT320	异常显示(最新)	
	DT321	异常显示(1 次前)	 异常跳闸数据
	DT322	异常显示(2 次前)	プロ ゆいで 女C)/g
	DT323	异常显示(3 次前)	
	DT324	版本表示*	内部软件版本(数据类型 13)
	DT325	/IX/44/7	73 即祝日似个(双加入主 10)
控	DT237	频率设定(无存储器设定)	 0.01Hz 单位(数据类型 3)
制	DT238	频率设定(有存储器设定)	0.01112 平匹(双陷大王 0)
/	R250□	运行控制	接点数据
指	DT253	异常复位	0x9696
令	DT255	紧急停止指令	0x9696
设定	$DT1{\sim}DT168$	功能参数设定	参照 P.276

^{*}Ver.2.0 以上的版本可以使用寄存器号 DT324、DT325。

- 继电器编号的末尾□为 BIT 的指定位置(16 进制数 0-F)。 关于各 BIT 的功能,请参照各项功能说明。
- 关于表中数据类型的说明请参照 P.282。
- 累积运行时间、风扇累积运行时间不能通过通信进行监控。

2.5.1 关于通信监控功能的补充说明

R309□ 控制电路端子状态监控(输入信号)

显示控制电路端子 No.2~8 的输入状态。

继电器编号	名称	内容
R3090	运行信号输入状态	
R3091	反转信号输入状态	
R3092	SW1 信号输入状态	MI Z ONYGENE
R3093	SW2 信号输入状态	1:端子 ON(闭)时 0:端子 OFF(开)时
R3094	SW3 信号输入状态	01.1101/11
R3095	SW4 信号输入状态	
R3096	SW5 信号输入状态	

R310□ 控制电路端子状态监控(输出信号)

显示 TR1 输出端子、TR2 输出端子、RY 输出端子的输出状态。

继电器编号	名称	内容
R3100	TR1 输出信号	1: TR 输出信号置 ON 的状态 0: TR 输出信号置 OFF 的状态
R3101	TR2 输出信号	1: TR 输出信号置 ON 的状态 0: TR 输出信号置 OFF 的状态
R3102	RY输出信号	1: RY 输出信号置 ON(励磁)的状态 0: RY 输出信号置 OFF(非励磁)的状态

R311□ 运行状态监控

显示变频器的运行状态。

继电器编号	名称	内容
R3110	运行状态	1: 运行状态 0: 停止状态
R3111	反转运行状态	1: 运行状态 0: 停止状态
R3112	到达信号	
R3113	过负载信号	
R3114	频率检测(P93)	1: ON 状态
R3115	频率检测(P94)	0: OFF 状态
R3116	检测电流(以上)信号	
R3117	检测电流(以下)信号	
R3118	PID 自动调谐	1: PID 自动调谐动作状态 0: 通常动作状态
R3119	定时器运行功能	1: 定时器运行状态 0: 通常动作状态
R311A	电机常数 自动调谐功能	1: 电机常数自动调谐动作状态 0: 通常动作状态
R311B	异常状态	1: 异常状态 0: 正常状态
R311C	速度搜索功能	1: 速度搜索动作状态 0: 通常动作状态
R311D	绕线模式控制	1: 绕线模式控制状态 0: 通常动作状态

R312□ 运行控制状态监控

显示变频器的运行控制状态。

继电器编号	名称	内容
R3120	运行指令状态	
R3121	反转指令状态	
R3122	SW1 指令状态	
R3123	SW2 指令状态	
R3124	SW3 指令状态	1: 有指令 0: 无指令
R3125	SW4 指令状态	- Vasa (
R3126	SW5 指令状态	
R3127	定时器运行中	
R3128	脉冲输入运行中	

R313□ 端子功能状态监控

显示多功能端子的功能状态。有功能设定、且有指令(SW 输入或者通信指令)的情况下为"1"(ON)。

继电器编号	名称	内容
R3130	多段速功能	
R3131	参数设定禁止功能	
R3132	复位输入功能	
R3133	复位锁定功能	
R3134	点动功能	
R3135	外部异常停止功能	
R3136	惯性停止功能	
R3137	频率信号切换功能	1: 功能置 ON 的状态
R3138	第2特性选择功能	0: 功能置 OFF 的状态
R3139	PID 功能切换功能	or sale of the sale
R313A	3 线停止指令功能	
R313B	频率▲(UP)/▼(DOWN)	
D2420	设定功能	
R313C	PWM频率信号选择功能	
R313D	脉冲计数器输入功能	
R313E	速度搜索功能	
R313F	绕线模式暂停功能	

DT320异常显示(最新)DT321异常显示(1 次前)DT322异常显示(2 次前)DT323异常显示(3 次前)

可显示从最新到3次前的异常跳闸。

异常内容的详情请参照 P.100~101。

数据	异常内容	数据	异常内容	数据	异常内容
0	SC1	8	OU3	19	SC5
1	SC2	9	LU	20	SC6
2	SC3	10	OL	21	SEr
3	OC1	11	AU	20	CPU
4	OC2	15	OP	23	Er1
5	OC3	16	FAN	24	Er2
6	OU1	17	ОН		•
7	OU2	18	SC4		

2.5.2 关于通信控制/指令功能的补充说明

DT237 无频率设定存储器存储 DT238 有频率设定存储器存储

- •要通过通信控制设定频率的情况下,请将 P004 的设定值设为"7"。
- 变频器发生异常的情况下,不能进行设定。
- 写入到 DT237 的情况下,不存储在变频器内部的存储器中。
- 有频率设定存储器存储(DT238)的情况下,在变频器内部的非易失性存储器中写入已设定的频率。但是,变频器内部的非易失性存储器的最大写入次数为10万次,因此要频繁改变频率设定的情况下,请设定为无存储器存储指令(DT237)。

R250□ 运行控制

- •要通过通信进行运行控制的情况下,请将 P003 的设定值设为"6"或者"7"。
- •变频器发生异常的情况下,即使将运行指令置 OFF("0"),异常也不会复位。要进行异常复位时,请使用异常复位指令(DT253)。
- •SW1~SW5的功能因设定而异。

继电器编号	名称	内容
R2500	运行指令状态	
R2501	反转指令状态	
R2502	SW1 指令状态	037 16 4
R2503	SW2 指令状态	1: ON 指令
R2504	SW3 指令状态	0: OFF 指令
R2505	SW4 指令状态	
R2506	SW5 指令状态	

DT253 异常复位指令

- ·通过在寄存器编号 253 中写入"0x9696",可实施异常复位。
- 可使用的数据仅为 "0x9696"。
- 变频器正常动作时忽略该指令。

DT255 紧急停止指令

- 通过在寄存器编号 255 中写入"0x9696",可实施紧急停止。
- 与外部异常输入的动作相同,显示"AU",然后惯性停止。
- •可使用的数据仅为"0x9696"。

2.5.3 关于多功能端子的端子输入

根据多功能端子功能的设定,有时无法执行通信发来的指令。

继电器编号	名称
多段速功能	端子输入和通信指令可同时使用*1
参数设定禁止功能	端子输入和通信指令可同时使用
复位输入功能	端子输入专用功能(请使用 DT253。)
复位锁定功能	端子输入和通信指令可同时使用
点动功能	端子输入专用功能
外部异常停止功能	端子输入专用功能(请使用 DT255。)
惯性停止功能	端子输入和通信指令可同时使用
频率信号切换功能	端子输入和通信指令可同时使用*1
第2性选择功能	端子输入和通信指令可同时使用*1
PID 功能切换功能	端子输入和通信指令可同时使用*1
3 线停止指令功能	端子输入专用功能
频率▲(UP)设定功能	端子输入专用功能
频率▼(DOWN)设定功能	端子输入专用功能
脉冲计数器输入功能	端子输入专用功能
PWM 频率信号选择功能	端子输入专用功能
速度搜索功能	端子输入和通信指令可一起使用
绕线模式暂停功能	端子输入和通信指令可一起使用

^{*1} 定时器运行过程中,通信发来的指令、端子输入均无效。

2.5.4 通信设定功能的补充说明

功能参数可通过通信进行设定。

参数 No.	寄存器 No.	功能名	显示数据	单位	内部数据	数据 类型
P001	DT1	第1加速时间	0000,0.1~3600	秒	0~36000	2
P002	DT2	第1减速时间	0000,0.1~3600	秒	$0 \sim 36000$	2
P003	DT3	运行指令选择	0~7	-	$0 \sim 7$	1
P004	DT4	频率设定信号	$0 \sim 7$	-	$0 \sim 7$	1
P005	DT5	V/F 模式	50 • 60 • FF • 3C	-	0 • 1 • 2 • 3	4
P006	DT6	V/F 曲线	0 • 1	_	0 • 1	1
P007	DT7	力矩提升	自动•0~40	%	100 • 0∼40	14
P008	DT8	最大输出频率	50.0~400.0	Hz	$5000 \sim 40000$	3
P009	DT9	基底频率	45.0~400.0	Hz	$4500 \sim 40000$	3
P010	DT10	变化点频率 1	$0.5{\sim}400.0$	Hz	$50 \sim 40000$	3
P011	DT11	变化点电压 1	0~100	%	0~100	1
P012	DT12	变化点频率 2	$0.5{\sim}400.0$	$_{\mathrm{Hz}}$	$50 \sim 40000$	3
P013	DT13	变化点电压 2	0~100	%	0~100	1
P014	DT14	最大输出电压	0~500	V	$0 \sim 500$	1
P015	DT15	S字加减速模式	$0{\sim}2$	_	$0\sim 2$	1
P016	DT16	选择电子热敏	0~3	-	0~3	1
P017	DT17	设定热敏电流	$0.1{\sim}100.0$	A	$1 \sim 1000$	2
P018	DT18	防止过电流失速功能	0~3	_	0~3	1
P019	DT19	防止过电压失速功能	0 • 1	_	0 • 1	1
P020	DT20	限流功能	0~9.9	秒	$0 \sim 99$	2
P021	DT21	OCS 电平	$1\sim200$	%	$1\sim\!200$	1
P022	DT22	再试功能	0~3	_	0~3	1
P023	DT23	再试次数	1~10	次	$1 \sim 10$	1
P024	DT24	启动模式	0~3	_	0~3	1
P025	DT25	瞬间停止后再次启动选择	0~3	_	0~3	1
P026	DT26	待机时间	$0.1{\sim}100.0$	秒	$1 \sim 1000$	2
P027	DT27	反转锁定	0 • 1	_	0 • 1	1
P028	DT28	停止模式	0 • 1	_	0 • 1	1
P029	DT29	启动频率	$0.5{\sim}60.0$	Hz	$50 \sim 6000$	3
P030	DT30	停止频率	$0.5{\sim}60.0$	$_{\mathrm{Hz}}$	$50 \sim 6000$	3
P031	DT31	DC 制动时间	0000 • 0.1~120	秒	$0 \sim 1200$	2
P032	DT32	DC 制动电平	0~100	%	$0 \sim 20$	5

参数 No.	寄存器 No.	功能名	显示数据	单位	内部数据	数据 类型
P033	DT33	正转 / 反转时停止频率	$0.5{\sim}60.0$	Hz	$50 \sim 6000$	3
P034	DT34	正转/反转时 DC 制动时间	$0000 \cdot 0.1 {\sim} 120.0$	秒	$0\sim 1200$	2
P035	DT35	正转/反转时 DC 制动电平	0~100	%	$0 \sim 20$	5
P036	DT36	SW1 功能选择	0~13	ı	0~13	1
P037	DT37	SW2 功能选择	0~13	_	$0 \sim 13$	1
P038	DT38	SW3 功能选择	0~13	_	$0 \sim 13$	1
P039	DT39	SW4 功能选择	0~13	_	$0 \sim 13$	1
P040	DT40	SW5 功能选择	0~13	_	$0 \sim 13$	1
P041	DT41	输入逻辑设定	0~31	_	$0 \sim 31$	1
P042	DT42	点动(JOG)频率	$0.5{\sim}400.0$	Hz	$50 \sim 40000$	3
P043	DT43	点动(JOG)加速时间	0.0~3600	秒	0~36000	2
P044	DT44	点动(JOG)减速时间	0.0~3600	秒	0~36000	2
P045	DT45	多段速功能选择	0~6	ı	0~6	1
P046	DT46	第2速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P047	DT47	第 3 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P048	DT48	第4速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P049	DT49	第5速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P050	DT50	第6速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P051	DT51	第7速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P052	DT52	第8速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P053	DT53	第9速频率	0000,0.5~400.0	Hz	0 ⋅ 50∼ 40000	3
P054	DT54	第 10 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P055	DT55	第 11 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P056	DT56	第 12 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P057	DT57	第 13 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P058	DT58	第 14 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3

参数 No.	寄存器 No.	功能名	显示数据	单位	内部数据	数据 类型
P059	DT59	第 15 速频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P060	DT60	第 16 速频率	0000,0.5~400.0	Hz	0 ⋅ 50∼ 40000	3
P061	DT61	第2加速时间	$0.1 \sim 3600$	秒	$1\sim\!36000$	2
P062	DT62	第2减速时间	$0.1 \sim 3600$	秒	$1\sim\!36000$	2
P063	DT63	第3加速时间	$0.1 \sim 3600$	秒	$1\sim\!36000$	2
P064	DT64	第3减速时间	$0.1 \sim 3600$	秒	$1\sim\!36000$	2
P065	DT65	第4加速时间	0.1~3600	秒	$1\sim\!36000$	2
P066	DT66	第4减速时间	0.1~3600	秒	$1\sim\!36000$	2
P067	DT67	定时器运行旋转方向	$0 \sim 255$	_	$0 \sim 255$	1
P068	DT68	定时器运行持续次数	0000 • 1~9999	次	0~9999	1
P069	DT69	定时器运行持续模式	0 • 1	_	0 • 1	1
P070	DT70	定时器运行持续待机时间	0000 • 0.1~6553	秒	$0\sim65530$	2
P071	DT71	第1速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P072	DT72	第2速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P073	DT73	第3速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P074	DT74	第4速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P075	DT75	第5速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P076	DT76	第6速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P077	DT77	第7速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P078	DT78	第8速运行时间	0000 • 0.1~6553	秒	$0 \sim 65530$	2
P079	DT79	第1速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P080	DT80	第2速脉冲输入次数	0000 • 1~65530	次	$0\sim\!65530$	2
P081	DT81	第3速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P082	DT82	第4速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P083	DT83	第5速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P084	DT84	第6速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P085	DT85	第7速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P086	DT86	第8速脉冲输入次数	0000 • 1~65530	次	$0 \sim 65530$	2
P087	DT87	PWM 频率信号选择	0 • 1	_	0 • 1	1
P088	DT88	PWM 信号平均次数	1~100	次	1~100	1
P089	DT89	PWM 信号周期	1.0~2000	ms	1~20000	2
P090	DT90	输出 TR1 功能选择	0~13	_	0~13	1
P091	DT91	输出 TR2 功能选择	0~12	_	0~12	1
P092	DT92	输出 RY 功能选择	0~12, r0~r12	_	0~21	6
P093	DT93	检测频率(输出 TR)	0000,0.5~400.0	Hz	0 • 50∼ 40000	3

参数 No.	寄存器 No.	功能名	显示数据	单位	内部数据	数据 类型
P094	DT94	检测频率〔输出 RY〕	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P095	DT95	电流检测电平	0.1~100.0	A	$1 \sim 1000$	2
P096	DT96	电流检测推迟时间	0.1~10.0	秒	$1 \sim 100$	2
P097	DT97	模拟•PWM 输出功能选择	0 • 1	ı	0 • 1	1
P098	DT98	模拟•PWM 输出电压修正	$25 \sim 100$	%	$25 \sim 100$	1
P099	DT99	下限频率	$0.5{\sim}400.0$	$_{\mathrm{Hz}}$	$50 \sim 40000$	3
P100	DT100	上限频率	$0.5{\sim}400.0$	Hz	$50 \sim 40000$	3
P101	DT101	零位止动功能选择	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P102	DT102	偏置/增益功能选择	0 • 1	ı	0 • 1	1
P103	DT103	偏置频率设定	$-99.0 \sim 250.0$	%	$10 \sim 3500$	7
P104	DT104	增益频率设定	$0.0{\sim}500.0$	%	$0\sim 50000$	3
P105	DT105	模拟输入过滤	$5\sim\!200$	次	$5\sim\!200$	1
P106	DT106	PID 控制模式	0~3、A0~A3	_	0~7	8
P107	DT107	比例增益[kp]	0.1~1000	_	$1 \sim 10000$	2
P108	DT108	积分时间[Ti]	0000 • 0.1~3600	秒	0~36000	2
P109	DT109	微分时间[Td]	0000 • 0.1~3600	秒	0~36000	2
P110	DT110	控制周期[Ts]	$0.01 \sim 60.00$	秒	$1 \sim 6000$	3
P111	DT111	PID 目标值	0.0~100.0	%	0~10000	3
P112	DT112	第1跳跃频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P113	DT113	第2跳跃频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P114	DT114	第 3 跳跃频率	0000,0.5~400.0	Hz	0 • 50∼ 40000	3
P115	DT115	跳跃频率宽度	0~10	Hz	0~10	1
P116	DT116	第2基底频率	45.0~400.0	Hz	4500∼ 40000	3
P117	DT117	第2力矩提升	自动・00~40	%	自动•0~40	1
P118	DT118	第2电子热敏选择	0~3	Ī	0~3	1
P119	DT119	第2热敏电流设定	0.1~100.0	A	1~1000	2
P120	DT120	第2变化点频率1	$0.5{\sim}400.0$	Hz	50~40000	3
P121	DT121	第2变化点电压1	0~100	%	0~100	1
P122	DT122	第2变化点频率2	$0.5{\sim}400.0$	Hz	50~40000	3
P123	DT123	第2变化点电压2	0~100	%	0~100	1
P124	DT124	第2模拟输入功能选择	0 • 1 • 2 • 3	_	0 • 1 • 2 • 3	1

参数 No.	寄存器 No.	功能名	显示数据	单位	内部数据	数据 类型
P125	DT125	第2模拟输入信号选择	$3 \sim 5$	-	$3\sim 5$	1
P126	DT126	第2偏置频率设定	-99.0~250.0	%	$10 \sim 3500$	7
P127	DT127	第2增益频率设定	$0.0{\sim}500.0$	%	$0\sim 50000$	3
P128	DT128	载波频率	0.8~10.0	kHz	0~6	9
P129	DT129	矢量控制选择	0 • 1	_	0 • 1	1
P130	DT130	电机容量	0.4~15	_	$2\sim 10$	10
P131	DT131	电机极数	2 • 4 • 6	_	0 • 1 • 2	11
P132	DT132	电机常数测定功能	0 • 1~3	_	0~3	1
P133	DT133	电压补偿常数	$0.01 \sim 99.99$	V	$1\sim9999$	3
P134	DT134	滑差率补偿频率	-5.00~5.00	Hz	$500 \sim 1500$	7
P135	DT135	通信协议选择*	0 • 1	_	0 • 1	1
P136	DT136	通信站号设定*	01~31	_	1~31	1
P137	DT137	通信速度设定*	48 • 96 • 192 • 384	bps	$4 \sim 7$	12
P138	DT138	停止位长度*	1 • 2	_	1 • 2	1
P139	DT139	奇偶校验*	0~2	_	0~2	1
P140	DT140	超时检测*	0000 • 0.1~60.0	秒	0~600	2
P141	DT141	发送等待时间*	1~1000	ms	1~1000	1
P142	DT142	TEXT 完成判断时间*	3~200	ms	3~200	1
P143	DT143	冷却风扇 ON-OFF 控制选择	0~3	_	0~3	1
P144	DT144	输入端子过滤	5~100	次	5~100	1
P145	DT145	动作状态监控	0~7	_	0~7	1
P146	DT146	线性速度倍率	0.1~100.0	_	1~1000	2
P147	DT147	警报 LED 动作选择	0~6	_	0~6	1
P148	DT148	警报 LED 上限电压	0.1~600.0	V	1~6000	2
P149	DT149	警报 LED 上限电流	0.1~100.0	A	1~1000	2
P150	DT150	密码	0000 • 1~9999	_	0~9999	1
P151	DT151	设定数据清除	0 • 1 • 2 • 3	_	$0 \sim 3$	1
P152	DT152	启动时 DC 制动时间	0000 • 0 • 1~120	秒	0~1200	2
P153	DT153	启动时 DC 制动电平	0~100	%	0~20	5
P154	DT154	MOP 功能选择	0 • 1 • 2	_	0 • 1 • 2	1
P155	DT155	MOP 动作加减速时间	0000 • 0.1~3600	秒	0~36000	2
P156	DT156	滑差率补偿控制	0 • 1 • 2	_	1	
P157	DT157	第2模拟叠加值	0~2000	%	7	
P158	DT158	第2电机容量	0~10	_	10	
P159	DT159	第2电机极数	0~2	_	11	
P160	DT160	第2电压补偿常数	1~9999	V	3	
P161	DT161	第2滑差率补偿频率	500~1500	$_{\mathrm{Hz}}$	7	

参数 No.	寄存器 No.	功能名	显示数据	单位	内部数据	数据 类型
P162	DT162	启动时速度搜索选择	0 • 1	ı	1	
P163	DT163	速度搜索待机时间	0~1000	秒	2	
P164	DT164	速度搜索电压恢复时间	$1\sim 100$	秒	2	
P165	DT165	再试时速度搜索选择	0 • 1	_	1	
P166	DT166	速度搜索再试选择	0 • 1	_	1	
P167	DT167	速度搜索再试次数	0~10	口	1	
P168	DT168	速度搜索上限频率选择	0 • 1	_	0	
P169	DT169	绕线模式控制选择	0 • 1 • 2	_	0 • 1 • 2	1
P170	DT170	绕线模式振幅	0.0~100.0	%	0~1000	2
P171	DT171	绕线模式反冲频率宽度	0.0~100.0	%	0~1000	2
P172	DT172	绕线模式周期	0.0~3600.0	sec	0~36000	2
P173	DT173	绕线模式上升时间系数	0.0~100.0	%	0~1000	2

^{*}如果不将变频器的电源切断一次,则变更后的数据不会反映出来。

【注意】

- 表中的数据类型请参照 P.282。
- •运行过程中,关于是否可通过通信来更改参数设定,请参照 P.72。变频器运行过程中,向许可的参数以外发送变更指令时,MEWTOCOL-COM 的情况下作为响应返回"模式出错(代码:53)"。Modbus(RTU)的情况下返回"0x07:模式出错"。

2.5.5 关于数据类型

监控和设定的数据中,有时变频器主机的显示数据和传送数据不同。通信所使用的数据中需要使用传送数据。请参照下表所示的数据类型,计算传送数据。

数据类型	显示数据和传送数据的关系
1	显示数据和传送数据相同的数据
2	0.1 单位的数据 (传送数据)=(显示数据)×10
3	0.01 单位的数据 (传送数据)=(显示数据)×100
4	"P005: V/F 模式"的数据 显示数据: 50 60 FF 3C 传送数据: 0 1 2 3
5	"P032: DC 制动电平"、"P035: 正转 / 反转时 DC 制动电平"的数据 (传送数据)=(显示数据) / 5
6	"P092: 输出 RY 功能选择"的数据 显示数据: $0 \sim 10$ r0 \sim r10 传送数据: $0 \sim 10$ 11 \sim 21
7	"P103: 偏置频率设定"、"P126: 第 2 偏置频率设定" "P134: 滑差率补偿频率"的数据 (传送数据)=(显示数据) X 10 + 1000
8	"P106: PID 控制模式"的数据 显示数据: 0 1 2 3 A0 A1 A2 A3 传送数据: 0 1 2 3 4 5 6 7
9	"P128: 载波频率"的数据 显示数据: 0.8 1.1 1.6 2.5 5.0 7.5 10.0 传送数据: 0 1 2 3 4 5 6
10	"P130: 电机容量"的数据 显示数据: 0.4 0.7 1.5 2.2 3.7 5.5 7.5 11 15 传送数据: 2 3 4 5 6 7 8 9 10
11	"P131: 电机极数"的数据 显示数据: 2 4 6 传送数据: 0 1 2
12	"P137: 通信速度设定"的数据 显示数据: 48 96 192 384 传送数据: 4 5 6 7
13	《例》VF100 Ver.2.00 的情况下[02.00] 0x200(传送数据)=前 1 位→机型代码[0]、 后 3 位×0.01=版本代码→200×0.01=[2.00]
14	"P007: 力矩提升"、"P117: 第 2 力矩提升" 显示数据: Auto 0~40 传送数据: 100 0~40

2.6 关于通信时的出错代码

通信中存在错误的情况下,不会对变频器的动作产生影响,该指令将被忽略。 此时,从变频器返回至高位计算机的出错代码如下所示。

■ MEWTOCOL

代码 (ASCII)	内容	说明		
21	NA CK 出错	通信过程中发生数据出错。 《例》校验出错、成帧出错		
27	帧超出出错	接收数据超过 118byte。		
40	BCC 出错	指令数据中发生传送出错。		
41	格式出错	指令消息不符合传送格式。 《例》指令数据数不足。没有"#"、"接收方"。		
42	NOT 支持出错	发送了不支持的指令。 将指令发送至不支持的接收方。		
53	忙碌出错	接收时,正在对前一指令进行处理。		
60	参数出错	功能指定的参数为不适当的代码。		
61	数据出错	接点 No.、数据 No.、数据代码形式等的指定中有错误。 《例》设定数据不在范围内。		
62	登录出错	数据监控时, 登录数超出。		
63	模式出错	发送指令时,变频器的动作模式为不能处理该指令的模式。 •变频器运行中的参数数据设定 •变频器异常中的参数数据设定		

■ Modbus(RTU)

出错 代码	内容	说明
01	功能代码出错	功能代码中有错误。 发送了不对应的功能代码。
02	地址出错	指定了指定外的地址。
03	数据出错	设定数据不在范围内。
07	模式出错	发送指令时,变频器的动作模式为不能处理该指令的模式。 •变频器运行中的参数数据设定 •变频器异常中的参数数据设定
08	格式出错	指令消息不符合传送格式。